LogoLOGO

TOPICS & NEWS

政府は、産業集積や補助金支給によって国内データセンターの脱酸素化に期待

人工知能(AI)の急速な普及に伴い、データセンターの重要性が増しています。現状では生成AIや数年後のAIを支えるデータセンターが不足する可能性があり、データセンターで消費する大量の電力をどう確保するかなどの課題を抱えています。各社は再生可能エネルギーを利用し、二酸化炭素(CO2)の排出量を抑えながら、需要に対応できるよう工夫を凝らしている状況もありますが、国内の企業はまだそこまで意識は高くない傾向にあります。

  

GAFAMは自社で再生可能エネルギー発電所を建設

  

アマゾンなどGAFAMはすでに、発電事業者と長期契約を結んで再エネを直接調達しています。データセンターなど電力を消費する施設の近くにある再エネ発電設備を確保して、「地産地消」のかたちで再エネを使用しています。

  

Google(グーグル)は、再エネ電源を50カ所以上、合計容量は5.5GWを調達していることを明らかにしています。米Microsoft(マイクロソフト)は世界10カ国で5.8GWの再エネ電源の調達契約を発表しています。

  

政府、補助金支給の仕組みを検討

  

そんな中、政府は再エネや原子力といった脱炭素電力が豊富な地域への産業集積を進めることを発表しました。工場やデータセンターなどを建設する際、企業と地方自治体による投資計画を審査し、脱炭素の度合いが高い案件を法人税優遇や補助金支給の対象とする仕組みを検討。

  

政府の脱炭素戦略を定めたグリーントランスフォーメーション(GX)推進法を改正。企業の拠点整備に関して、脱炭素電力の使用割合などを明記した計画を策定してもらう予定です。

  

域内で使う電力の一定程度以上を脱炭素型でまかなう自治体との申請を条件とすることで、環境負荷低減を軸とした企業立地政策への転換を狙います。

  

認定を経て、企業は法人税の軽減や設備投資への補助金支給といった措置を受けられます。

  

脱炭素化に向けて、企業の意識の変容に期待

  

国内で脱炭素電力を供給できる地域には偏りがあります。太陽光や風力と言った再エネや原子力による発電施設が多く立地し、脱炭素の電源比率が4割を超える地域は国内で北海道と関西、九州だけとなっています。風向きに左右される洋上風力の適地は北海道や青森県、秋田県、長崎県などの沖合に限られます。

  

発電所から遠くに電力を運べば、送電ロスが発生します。送電網設備にもコストがかかり、遠隔地からの電力の使用は割高となります。産業集積によって電力の地産地消を促し、エネルギーの効率的な利用につなげます。

  

国内では近年、半導体関連の工場建設に加え、データセンターの新設が活発になっています。電力消費の増加が見込まれる一方、政府は50年までにCO2など温暖化ガスの実質排出ゼロを目指しています。

  

補助金支給によって企業の意識が脱炭素化に向かっていくことが期待されますが、実際はどうなるのか。今後の状況も紹介していきたいと思います。

TOPICS & NEWS

2024.08.23

進むデータセンター建設計画、電力と土地の確保を優先的に

日本は地震や台風、河川の氾濫など自然災害の影響を受けやすい国です。

  

これまでも安定的に稼働できるデータセンターを見極める立地条件としては、地震や台風などの自然災害に強く、その被害を最小限に抑えられるようなロケーションでデータを管理することが重要とされてきました。

  

災害に強いロケーションとは、活断層が近場に存在せず、津波や高潮、集中豪雨などによる浸水の危険性を指摘されていない地域のことを指します。

  

しかし昨今では、データセンター建設の計画において、災害の危険性も考慮に入れつつも電力と土地の確保を優先する傾向が見られています。

  

「ESRコスモスクエア」大阪海浜エリアに

  

大阪市住之江区は大阪都心から10km圏内に位置しており、商業施設が集まる海辺エリア、高層マンションが立ち並ぶ都会エリア、工場が多くある工業エリアなど、さまざまな顔を持つ街です。

  

ESRグループ全体で初のデータセンタープロジェクト「ESRコスモスクエア」は、この大阪市住之江区に、合計で最大98MWIT電力容量を備えた3棟構成のキャンバス型データセンターを計画しています。これまではデータセンターの進出がなかったエリアですので、注目を集めました。

  

建物は地上540.34m(最高高さ43.00m)という高さ、敷地の周りを壁で囲むなど、床上げや防水壁といった工法を駆使することで災害対策を施す様子が伺えます。 

  

周辺には多くのクラウドネットワークへの接続拠点、通信事業者、大手IT企業などが集積しているほか、ハイパースケーラーの拠点も増加していることから、高いデータセンター需要を見込んでいます。

  

ESRコスモスクエア」の総資産額は、施設稼働状況にもよりますが、215,000万ドル(約3,140億円)相当になると予想されています。

  

このような背景にあるのは、ChatGPTをはじめとする生成AIの普及です。

  

三菱総研が20245月に発表した調査結果によると、2040年にはデータセンターで処理する計算量が2020年時点の十数万倍に膨れ上がる可能性があるとのこと。データセンター事業者はエネルギー効率を高めようと工夫しているものの、それを踏まえても勢いは止まらない状況です。

  

電力と土地の確保を優先しなければ、生成AIの進化などIT関連の世界的なトレンドに日本が追随できなくなるかもしれないのです。

  

データセンター建設における災害対策にも入念な計画を期待

  

今回の事例で紹介した大阪は、東京に次ぐ商業の中心地であり、人口構成やインフラの整った地域で、中国を除くアジア太平洋地域で5番目に大きなデータセンター市場となっています。

  

日本の大企業の経営改革においてもデータセンターというテーマの重要性が増してきている状況ではありますが、災害対策と言う観点においてはありとあらゆる状況を想定し、しっかりとした計画の元に建築が進められることを願いたいと思います。

TOPICS & NEWS

2024.07.25

一流メーカー工場跡地にてデータセンター建設が進行

日本の一流メーカーの工場跡地がデータセンター用地として採用される動きが進んでいます。データセンター用地としての工場跡地の魅力には土地の広さと電力確保の容易さが挙げられますが、今回はその具体的な状況を紹介していきます。

  

マレリ

オーストラリアの不動産開発大手レンドリースが、データセンター事業に参入し、さいたま市北区日進町の自動車部品メーカーマレリから取得した敷地に同社として初のデータセンター建設を進めています。

  

レンドリースは豪に本社を置き、アジア、欧州、北米に拠点を置く不動産グループ。

  

データセンター事業の初プロジェクトとなる今回の施設は、都心から約30キロのマレリの工場跡地約33000平方メートルの敷地に20226月から建設を進めてきました。

  

内装工事が進む1期棟は地上6階建て(延床面積約3万平方メートル)で、IT負荷容量は48メガワットを備えます。

  

24年秋以降の稼働を目指し、隣接地には今後、同規模程度の2期棟を整備する予定です。

  

日野自動車  

日野自動車は、本社に隣接する東京都日野市の日野工場の敷地の一部を売却する方針を発表しました。工場敷地の3分の1にあたる114000平方メートルの土地が対象となります。データセンターの建設用途に限定して指名競争入札の手続きを進めています。

  

周囲には住宅が多いことから、居住環境への影響などを考慮して用途をデータセンター向けとし、複数企業に入札を要請。譲渡する土地で一部のトラック部品生産が残っており、茨城県古河市の古河工場などに移転を終え次第、更地にして引き渡す予定です。

  

同社はエンジン不正の影響で223月期の連結最終損益が847億円の赤字でした。233月期の連結営業利益も前期比82%減の60億円を見込むなど、苦境が続いています。

  

敷地売却の目的は「遊休資産の活用で財務基盤のさらなる安定を図るため」(同社)としています。

  

シャープ

シャープは、液晶事業を縮小するため9月末までに生産を停止する大阪府堺市の堺工場の一部売却に向け、ソフトバンクと独占交渉権を含む基本合意書を結んだと発表しました。

  

ソフトバンクは、土地・建物の一部を譲り受け、生成AI(人工知能)の開発などに活用する大規模なデータセンターを構築する計画で、2024年秋の着工、25年中の本格稼働を目指します。

  

堺工場の跡地活用を巡り、シャープは先にKDDIなどともAIデータセンター設立に向けた協議を始めることで合意しています。ソフトバンクとは別の敷地を提案して協議を続けていくということです。

  

経営の取り組みの多様化

各地でデータセンター建設が進行する中、データセンターという経営テーマへの取り組みも多様化しています。

  

日本のNECがデータセンターの売却を検討していると報じられています。

  

またITインフラ・サービス大手のNTTデータグループが、データセンターに特化した不動産投資信託(REIT)市場に参入することを発表。国内企業によるデータセンター特化型 REITの設立は国内初となります。

  

20263月の運用開始を目指し、資産規模は最大1,000億円を見込んでいます。NTTデータは、この新体制を活用し、AIなどによる需要急増を取り込み、データセンター建設を加速させる狙いだとしています。

  

日本の大企業の経営改革において、データセンターというテーマの重要性が増してきていることがわかります。新たな取り組みを企画する企業も増えていくことが予想されるので、今後もその状況を紹介していきたいと思います。

TOPICS & NEWS

2024.07.16

生成AI用途で成長加速するハイパースケールデータセンターの需要は、2023年から2045年で約4倍に

IDC Japan株式会社は、国内ハイパースケールデータセンターの需要量に関する分析結果を発表。2045年末時点のハイパースケールデータセンターの需要量は、2023年の国内キャパシティの約4倍に達する可能性があると分析しています。

 

※ ハイパースケールデータセンターとは、AWSやグーグル、マイクロソフトなどのメガクラウドサービス事業者が、クラウドサービスを提供するために利用する巨大なデータセンターのこと。

 

クラウドサービス事業の急成長を背景に、すでに国内では千葉県印西市などで複数の巨大データセンターの増設が進められていますが、これに加えて、生成AI機能をクラウドサービスで利用する需要が拡大しています。生成AI用途のハイスペックサーバーはハイパースケールデータセンター内に配備することが多く、その結果として、ハイパースケールデータセンターに対する需要は増加。この需要に対応するために、データセンター事業者や不動産事業者が、データセンターを新設してキャパシティの供給量を増加させているということです。

 

2040年までにデータセンターが消費する電力は6倍になる見通し

 

生成AI対応のデータセンターには、HPCサーバーやGPUサーバーが設置され、大量の電力が消費されます。更に冷却のための電力も大量の必要となることから、生成AIの普及を背景に、電力消費が爆発的に増えることになります。

 

世界のデータセンターの電力使用量については、省エネ対策などを実施しない場合は、2040年に22年比6倍超の2761テラ(テラは1兆)ワット時に増えるとの見通しが示されています。

 

緊急の課題は円滑な電力供給、そして再生可能エネルギー電源の確保へ

 

国内においても、加速するデータセンター需要に対して、課題である電力供給への対策が急がれています。2050年カーボンゼロの方針を打ち出している企業も増えていることから、PPAPower Purchase Agreement)により再生可能エネルギー電源の確保を打ち出すデータセンター事業者も増えてきました。経済産業省の電力・ガス取引監視等委員会も、生成AIの利用拡大で新設が見込まれるデータセンターについて、立地先を再生可能エネルギーが豊富な地域に誘導する方策を検討するなど動きを見せています。

 

急成長を続ける国内データセンター市場の重要な課題である“電力確保”“再生可能エネルギー電源の確保”。その対策について、今後も注目していきたいと思います。

 

TOPICS & NEWS

2024.06.26

NVIDIAの決算好調、その背景を探る

米半導体大手NDIVIAの時価総額が5日、初めて3兆ドル(約468兆円)を突破しました。

 

NDIVIAの時価総額は今年2月に初めて2兆ドルの大台を突破。生成AI向け半導体が支えとなり同社の業績は急拡大しています。米株式市場のけん引役として存在感を高めており、2兆ドル突破からわずか3カ月余りでの3兆ドル超えとなりました。

 

AIを含むデータセンター向けの売り上げが業績を押し上げており、5月に発表した2024年2~4月期決算は、純利益が前年同期の約7・3倍の148億8100万ドル、売上高は約3・6倍の260億4400万ドルに膨らみました。

 

強いNDIVIA、その背景

 

NDIVIAが製造しているのはGPU(画像処理半導体)です。GPUは動画・画像・アニメーション表示などのディスプレー機能のために設計されたチップで、ゲーミングPCなどで映像をなめらかに表示するために用いられてきました。

 

今、このGPUの需要が拡大しています。その起爆剤となっているのが、「データセンター」とChatGPTに代表される「生成AI」。

 

これまでデータセンターにはCPU(Central Processing Unit)のみ搭載するケースが一般的でしたが、AIの普及によってCPUと併せて、GPUもデータセンターに搭載する流れが進行。ただデータセンターの中でGPUが搭載されているものは全体の1〜2割程度でした。

 

それが、生成AIの普及によって事情が変わります。

 

画像生成や自然言語生成などの生成AIでは、学習によって作り上げたAIモデルを動かして結論を得る「推論」というプロセスが必要になります。ChatGPTに質問をした際、答えが返ってくるのは「推論」の結果です。推論プロセスでは、学習プロセスよりも多くの計算が必要になります。そのため、大量の計算に適したGPUも併せて搭載する必要があるのです。

 

今後、世界のほとんどのデータセンターで情報を生成する主要な作業が生成AIになることは明らかで、また10年間で、世界のほとんどのデータセンターにGPUが搭載されることになると言われています。

 

AI開発業者のスタンダードNDIVIAの「CUDA」

 

GPUは、CPUとは異なり、大量の計算を同時に並列して行うことが得意ですが、その能力を引き出すためには、GPU向けの開発環境が必要です。

 

NDIVIAが開発した「CUDA」はそんな「GPU向けの開発環境の一つ」ですが、ニューラルネットの研究者たちの間で、CUDAが実質的なスタンダードになってしまったため、その上にライブラリも数多く作られ、今や、少なくとも学習プロセスに関して言えば、「CUDAを使う以外の選択肢はほぼない」状況になっているのです。

 

CUDAは、NDIVIAが自社製のGPUの上に作った開発環境であるため、結果として「ニューロンの学習プロセスにおいては、NVIDIAを使う」ことがスタンダードになってしまったということです。

 

CUDAはライバルが到底乗り越えられない競争上の「掘」としてNVIDIAを守っています。

 

当面はNVIDIAほぼ独占状態か

 

英調査会社オムディアによると、NVIDIAはデータセンター向けAI半導体の世界市場で77%(2023年)のシェアを持つとのこと。同社の先端のGPUはAIの開発を手掛ける企業の間で奪い合いになっています。

 

当面はデータセンター向けのGPU市場はNVIDIAのほぼ独占状態が予測されますが、GPUを扱う他の企業の動きにも注目していきたいと思います。

TOPICS & NEWS

2024.06.12

【OpenAI】GPT-4o – 進化を続ける生成AI

2024年5月、OpenAIが、ChatGPTの最新モデルである「GPT-4o」をリリースしました。

テキスト、音声、画像を統合的に処理可能な最先端のマルチモーダルAIであり、無料版ChatGPTにも実装される点が注目されています。

GAFAをはじめ日本の企業でも新設ラッシュのデータセンターに大きな影響を与える生成AI、その代表格であるOpenAIのChatGPT最新バージョン「4o」は従来のものと何が違うのか、見ていきたいと思います。

 

GPT-4oとは?

 

ChatGPT-4o(Omni、オムニ)とは、2024年5月にOpenAIが発表したChatGPTの最新モデルです。オムニとはラテン語で「全て」という意味であり、文章だけでなく画像や音声も含む全ての情報を取り扱い、あらゆるタスクを実行できることを表しています。

 

従来のモデルであるGPT-4 Turboに比べて、圧倒的に回答精度と回答スピードが向上したことに加え、人間のように感情豊かに音声会話ができ、画像の細かい部分まで読み取るなど、あらゆる点においてバージョンアップしています。

 

GPT-4oの特徴と他のモデルとの違いは?

 

GPTシリーズは、OpenAIが開発する大規模言語モデルであり、その性能向上は目覚ましいものがあります。

 

2020年に発表されたGPT-3は、175Bのパラメータを持つ大規模モデルとして注目を集めました。2022年のGPT-3.5では、ChatGPTに実装され、一般ユーザーとの対話を通じて言語生成AIの可能性を広く知らしめました。そして2023年のGPT-4では、マルチモーダル化への第一歩が示されました。

 

GPT-4oは、このGPTシリーズの進化の延長線上に位置づけられます。ただし、単なる性能向上にとどまらず、音声・画像・テキストのスムーズな統合処理を実現した点で、従来のGPTとは一線を画しています。

 

従来のモデルと比べて大幅に向上した主要な評価ポイントを以下に紹介します。

 

 テキスト精度

複雑な文章の理解と生成において高い精度を誇ります。これにより、より自然で一貫性のあるテキスト生成が可能となります。

執筆に欠かせない記事構成案も簡単に作成することができます。

 

 テキスト・音声の応答速度

新しいアルゴリズムにより、テキストおよび音声の応答速度が改善され、リアルタイムでの対話がさらにスムーズになりました。また、音声に抑揚があるので、人と会話しているような感覚にもなります。

 

 音声認識と翻訳機能

音声認識機能の精度が向上し、多言語対応の翻訳機能も強化されています。これにより、グローバルなコミュニケーションがより効率的に行えます。

音声を認識し処理を行うことで、リアルタイムに翻訳することも可能です。

 

 画像の認識機能強化

画像認識能力も強化されており、画像の内容を高い精度で解析し、関連する情報を提供することができます。

画像データから文字を抽出することも可能です。読み取りづらい文字に関しては、その他の画像データから推測して文字を抽出することができます。

 

 セキュリティ機能

日本語を含む20言語で新しいトークナイザーが導入され、セキュリティ面でも大幅な改良が施されています。これにより、データの安全性と処理効率が向上したとともに、ユーザーのプライバシーを保護しつつ、高速で安全なデータ処理が可能になりました。

 

進化するChatGPT

 

画像処理能力の向上や音声認識機能の追加など、今回のアップデートで驚かされる機能がたくさん追加されたChatGPT。

今後はリアルタイムビデオを介して会話できるようになり、読み込ませた動画の内容を音声で解説させることができる新しい音声モードのリリースも予定されています。

生成AIを牽引しているChatGPTの展開は今後のデータセンターにも大きく影響を与える要素になりますので、その様子は今後も随時ウォッチしていきたいと思います。

 

一方、今後さらに開発される新機能に期待が膨らむなか、消費電力は今までの何倍にも膨れ上がっていくことが予想されます。

日本においては新たに開設されるデータセンターの電力不足をどう解消していくのか。

こちらも併せて注視していきたいと思います。

TOPICS & NEWS

2024.05.28

1 2 3 4 8